Online Learning of Maximum p-Norm Margin Classifiers with Bias
نویسندگان
چکیده
We propose a new online learning algorithm which provably approximates maximum margin classifiers with bias, where the margin is defined in terms of p-norm distance. Although learning of linear classifiers with bias can be reduced to learning of those without bias, the known reduction might lose the margin and slow down the convergence of online learning algorithms. Our algorithm, unlike previous online learning algorithms, implicitly uses a new reduction which preserves the margin and avoids such possible deficiencies. Our preliminary experiments show that our algorithm runs much faster than previous algorithms especially when the underlying linear classifier has large bias.
منابع مشابه
Online Learning of Approximate Maximum Margin Classifiers with Biases
We consider online learning of linear classifiers which approximately maximize the 2-norm margin. Given a linearly separable sequence of instances, typical online learning algorithms such as Perceptron and its variants, map them into an augmented space with an extra dimension, so that those instances are separated by a linear classifier without a constant bias term. However, this mapping might ...
متن کاملThe Role of Weight Shrinking in Large Margin Perceptron Learning
We introduce into the classical perceptron algorithm with margin a mechanism that shrinks the current weight vector as a first step of the update. If the shrinking factor is constant the resulting algorithm may be regarded as a margin-error-driven version of NORMA with constant learning rate. In this case we show that the allowed strength of shrinking depends on the value of the maximum margin....
متن کاملSimplified PAC-Bayesian Margin Bounds
The theoretical understanding of support vector machines is largely based on margin bounds for linear classifiers with unit-norm weight vectors and unit-norm feature vectors. Unit-norm margin bounds have been proved previously using fat-shattering arguments and Rademacher complexity. Recently Langford and Shawe-Taylor proved a dimensionindependent unit-norm margin bound using a relatively simpl...
متن کاملLow-rank Audio Signal Classification Under Soft Margin and Trace Norm Constraints
We propose an algorithm to do speech/non-speech classification based on low-rank matrix representative audio data. Conventionally, the low-rank matrix data can be represented by a vector in high dimensional space. Some learning algorithms are then applied in such a vector space for matrix data classification. Particularly, maximum margin classifiers, such as support vector machine (SVM) etc. ha...
متن کاملA New Approximate Maximal Margin Classification Algorithm
A new incremental learning algorithm is described which approximates the maximal margin hyperplane w.r.t. norm p ≥ 2 for a set of linearly separable data. Our algorithm, called almap (Approximate Large Margin algorithm w.r.t. norm p), takes O ( (p−1) α2 γ2 ) corrections to separate the data with p-norm margin larger than (1 − α) γ, where γ is the (normalized) p-norm margin of the data. almap av...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008